TRAMO EN CURVA
Las curvas horizontales circulares simples son arcos de
circunferencia de un solo radio que unen dos tangentes consecutivas,
conformando la proyección horizontal de las curvas reales o espaciales.
P.C. : Punto de inicio de la curva
P.I. : Punto de Intersección de 2 alineaciones
consecutivas
P.T. : Punto de tangencia
E : Distancia a externa (m)
M : Distancia de la ordenada media (m)
R : Longitud del radio de la curva (m)
T : Longitud de la subtangente (P.C a P.I. y P.I. a P.T.)
(m)
L : Longitud de la curva (m)
L.C : Longitud de la cuerda (m)
Δ : Ángulo de deflexión (º)
p : Peralte; valor máximo de la inclinación transversal de
la calzada,
asociado al diseño de la curva (%)
Sa : Sobreancho que pueden requerir las curvas para
compensar el aumento de espacio lateral que experimentan los vehículos al
describir la curva (m)
Nota: Las medidas angulares se expresan en grados
sexagesimales.
En la siguiente figura se ilustran los indicados elementos
y nomenclatura de la curva
horizontal circular.
DETERMINACIÓN DEL RADIO MÍNIMO: PROBLEMA DE
DESLIZAMIENTO, PROBLEMA DE VUELCO.
Los radios mínimos de curvatura horizontal son los menores
radios que pueden recorrerse con la velocidad de diseño y la tasa máxima de
peralte, en condiciones aceptables de seguridad y comodidad, para cuyo cálculo
puede utilizarse la siguiente fórmula:
Dónde:
Rmín : Radio Mínimo
V : Velocidad de diseño
Pmáx : Peralte máximo asociado a V (en tanto por uno).
ƒmáx : Coeficiente de fricción transversal máximo asociado a V.
El resultado de la aplicación de la
indicada fórmula se aprecia en la siguiente tabla.
En general en el trazo en planta de un tramo homogéneo,
para una velocidad de diseño, un radio mínimo y un peralte máximo, como
parámetros básicos, debe evitarse el empleo de curvas de radio mínimo; se
tratará de usar curvas de radio amplio, reservando el empleo de radios mínimos
para las condiciones críticas.
INTRODUCCIÓN AL PERALTE
A continuación,
en las siguientes figuras se puede obtener el peralte y el radio, para una
curva que se desea proyectar, con una velocidad específica de diseño.
SOBREANCHO
Es el ancho adicional de la superficie de rodadura de la vía, en los
tramos en curva para compensar el mayor espacio requerido por los vehículos.
La necesidad de proporcionar sobreancho en una calzada, se debe a la
extensión de la trayectoria de los vehículos y a la mayor dificultad en
mantener el vehículo dentro del carril en tramos curvos.
En curvas de radio pequeño y mediano, según sea el tipo de vehículos
que circulan habitualmente por la carretera, ésta debe tener un sobreancho con
el objeto de asegurar espacios libres adecuados (holguras), entre vehículos que
se cruzan en calzadas bidireccionales o que se adelantan en calzadas
unidireccionales, y entre los vehículos y los bordes de las calzadas. El
sobreancho requerido equivale al aumento del espacio ocupado transversalmente
por los vehículos al describir las curvas más las holguras teóricas adoptadas
(valores medios). El sobreancho no podrá darse a costa de una disminución del
ancho de la berma.
Las holguras teóricas en recta y en curva ensanchada, consideradas
para vehículos
comerciales de 2.6 m de ancho, según el ancho de una calzada se
aprecian en la siguiente tabla.
Dónde:
h1 : holgura entre
cada vehículo y el eje demarcado.
h2 : holgura entre
la cara exterior de los neumáticos de un vehículo y el borde exterior del
carril por el que circula (en recta) o de la última rueda de un vehículo simple
o articulado y el borde interior de la calzada en curvas.
h2 ext : holgura entre
el extremo exterior del parachoques delantero y el borde exterior de la
calzada, h2 ext ≈ h2 en recta y h2 ext = 0 en curvas ensanchadas.
Las holguras en curvas ensanchadas son mayores en calzadas de 7.20 m
respecto de las de 6.00 m, no sólo por el mayor ancho de calzada, sino por las
mayores velocidades de circulación que en ellas se tiene y por el mayor
porcentaje de vehículos comerciales de grandes dimensiones.
BANQUETA DE VISIBILIDAD.
En las curvas horizontales deberán asegurarse la visibilidad
a la distancia mínima de parada, de acuerdo a lo indicado en la presente
sección.
El control de este requisito y la determinación del ancho
máximo (a máx.) de la banqueta de visibilidad, se definirá luego de verificar
si una curva provee o no la distancia de visibilidad requerida, de acuerdo a la
siguiente figura.
Si la verificación indica que no se tiene la visibilidad
requerida y no es posible o económico aumentar el radio de la curva, se
recurrirá al procedimiento de siguiente figura.
Asimismo, se presenta la siguiente tabla con las distancias
mínimas a los obstáculos fijos, en tramos en tangente, medidos desde el borde
exterior de la berma, hasta el borde del objeto.
VIDEO REFERENCIAL DEL TEMA - TRAMO EN CURVA
(Peralte y Radio de Curvatura)
No hay comentarios.:
Publicar un comentario